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Abstract— Algorithms1 have been developed to find typical 
patterns and atypical events within complex data systems.  
A software package called “The Morning Report” was 
developed in which these algorithms were applied to digital 
flight data for commercial airlines.  These systems contain 
many sets of data with hundreds of variables being 
measured over time generally resulting in many gigabytes 
of data to be analyzed.  Using statistical and mathematically 
based algorithms this software identifies atypical flights, 
along with identifying which flight parameters and which 
flight phases are atypical.  These algorithms also cluster the 
flights into a finite number of distinct patterns.  This allows 
the flight analyst the opportunity to focus on atypical 
flights, as well as the typical flight patterns discovered, 
removing the need to individually explore each flight 
separately.  This software is titled “The Morning Report” 
because it was designed to run each night, producing a 
report in the morning.  This report only identifies the 
characteristics of the newly added flights, but it uses past 
flight data to help establish the baseline.  The report consists 
of interactive analysis tools that allow for plotting of 
significant flight parameters for each atypical flight as 
compared to the typical flights, as well as plots that contrast 
a flight pattern of interest to any other flight pattern, or all 
patterns combined.   
 
The approach, algorithms and software are extendable to a 
large variety of domains to identify the typical patterns, 
atypical reports, and providing a plain English explanation.  
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1. INTRODUCTION 
 

One of the main tasks within the Aviation Performance 
Measurement System (APMS) program is the software 
development of “The Morning Report.”  The Morning 
Report contains mathematical algorithms that analyze 
digital flight data.  These analyses include statistical 
methodologies to find atypical flights and establish typical 
patterns.  The Morning Report process is divided into 3 
distinct phases:  (1) Data Transformation, (2) Analysis, and 
(3) Displays and Plots. 

Phase 1 of The Morning Report focuses on transforming the 
flight data for analysis in Phase 2, display in Phase 3 and 
efficient storage.  The number of flight parameters for 
different aircraft ranges from 70 to more than 400.  The data 
consist of continuous (interval ratio) parameters (such as, 
airspeed and roll) and categorical (discrete) parameters 
(such as air ground switch and autopilot mode).  Most of the 
parameters are recorded every second, but some are 
measured up to eight times a second or once every two 
seconds. With thousands of flights a day and hundreds of 
parameters being recorded usually every second for each 
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flight, the amount of data escalates into the gigabytes and 
the ability to analyze the data becomes more difficult.   

In order to analyze large amounts of flight data, certain data 
analysis techniques were employed.  Processing was 
designed to process all the information from the flight in 
one pass, so that raw flight data will not continually need to 
be accessed.  Analysis was designed to focus around the 
partitioning of each flight into specific flight phases.  These 
flight phases are then subdivided into subphases.  These 
phases and subphases have been designed to allow for the 
analysis of a time period during a flight that is relatively 
homogenous within each flight and nominally similar 
between flights.   

Within each flight subphase, a mathematical signature that 
represents the data characteristics of the flight is calculated 
and stored.  These signatures serve two purposes– 
summarize the data characteristics of the flight during the 
subphase while greatly reducing the storage size, and allow 
for graphical representations of the data, without having to 
store and access all the data. 

The summarizing signatures store information about each 
flight parameter concerning such areas as magnitude, rate of 
change, and data variability for continuous data.  Discrete 
flight parameters are also summarized by characterizing the 
time spent in each state, and frequency of state transitions 
(i.e. landing gear going from up to down). 

Once flight signatures are calculated they are stored in a 
static database.  These signatures become the inputs for 
Phase 2 of The Morning Report. 

Phase 2 is the analysis phase of The Morning Report.  It is 
designed to be run as often as an analysis is desired.  It is 
also designed to run larger analyses overnight, so that they 
can be viewed in the morning, hence the name “Morning 
Report”.   

The first step of Phase 2 is to select which flights will be 
included in the analysis.  Characteristics that may be used in 
defining your selection of flights include: departing and/or 
landing airport and/or runway, date of flight, flight phases 
(i.e. cruise), flight parameters of interest, and type of 
equipment.   (For over night processing, a standard set of 
characteristics is typically used.) 

 The next step is to determine typical patterns.  The 
mathematical signatures are used, along with a statistical 
clustering algorithm to group similar flights together.  The 
groups are established within each flight phase.  Those 
flights that are not like other flights usually do not cluster 
into any of the groups and are left as “singletons”.  The 
clustering technique currently employed uses K-means 
clustering [1]; however, there are many others that could 
have been selected, each having its own benefits and 
disadvantages. 

After similar flights are grouped together, then an algorithm 
is applied to determine which flights are atypical.  An 
atypical flight is a flight that, for one reason or another, is 
different than the other flights.  This difference may be 
obvious, such as airspeed of 200 mph, when all of the other 
flights have airspeed close to 150 mph.  The difference may 
be more subtle by involving multiple parameters that by 
themselves are not atypical, but are when studied 
collectively.  An example of this is a flight that may have 
airspeed that is modestly different from the mean value and 
a vertical speed that is also only modestly different than the 
mean value; however, it could be atypical if a flight has 
both at the same time and in a pattern that contrasts with the 
others. 

Atypicality is determined using a series of mathematical 
computations to determine an atypicality score.  The scores 
are calculated within each flight phase, as to keep the flight 
segments homogeneous.  These atypicality scores are then 
converted to a scale that is not dependent on the flight 
phase.  This allows for the flight/flight phases to be ranked 
in order of most atypical to least.  The top 1% of atypical 
flight/flight phases are defined as level 3 atypicalities.  Then 
the next 4% are defined as level 2 atypicalities.  The next 
15% after the first 5% are defined as level 1 atypicalities.  
The percentages selected are arbitrarily but reflect the 
nominal number of atypical flights that will be referred to 
the aviation expert as atypical.  

After these computations are completed, the cluster 
membership information and atypicality scores are stored 
into a static database.  They become the inputs for Phase 3. 
Phase 3 allows the user to decide what they want to display 
and then allows the use of drill-down displays and plots to 
help the user understand the characteristics of each atypical 
flight or group of flights, as well as which flight parameters 
are influencing the atypical flights.  

Although Phase 2 is described as being processed on digital 
flight data, it is interesting to note that it really could be 
processed on any type of data.  Atypicality scoring and 
clustering are independent of the source of data.  Using 
other sources of data may require a different mathematically 
representative signature to input into Phase 2.  It may also 
result in different plots in Phase 3 that are more suited to 
the type of data. 

The following sections will explain the mathematical data 
signatures that are calculated in the first phase of The 
Morning Report.  This will be followed with sections 
explaining the Phase 2 data analyses processing, including 
atypicality calculations, and finding typical groups.  A 
discussion of The Morning Report Phase 3 displays and 
plots will then follow. 
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2. REPRESENTATIVE MATHEMATICAL 
SIGNATURE 
 

Because most parameters are recorded every second and 
flights can last hours, a large amount of data needs to be 
sifted through.  One method to help with this is dividing 
each flight into flight phases.  Each of these flight phases is 
then subdivided into subphases.  These phases and 
subphases allow the investigator to compare many flights 
during similar portions of flight.  This may show that a 
flight was atypical at take-off, but typical during the other 
phases.   

These phases and subphases have been designed to allow 
for the analysis of a time period of data during a flight that 
is more homogenous.  Ten phases have been used in 
analyzing flight data.  These phases are titled:  Taxi Out, 
Takeoff, Low Speed Climb, High Speed Climb, Cruise, 
High Speed Descent, Low Speed Descent, Final Approach, 
Landing, and Taxi In.  Each phase can consist of multiple 
subphases.  For example, the Landing phase consists of the 
subphases – initial touchdown to reverse thrusters on, 
reverse thrusters on to 80 knots, and 80 knots to 60 knots. 

The objective of the Phase 1 processing is to summarize 
each parameter of each flight for each phase or subphase 
with a mathematical signature.  This processing summarizes 
the many seconds of data for a parameter that occur in a 
given phase for each flight, providing only a few data 
statistics that summarize the data characteristics mentioned 
earlier.  These signatures are calculated for both continuous 
data parameters and discrete parameters.  The continuous 
data signatures will be discussed first. 

The first step in creating a continuous data mathematical 
signature for a given flight and parameter is using 5 seconds 
of data before and after the data at the first second of the 
desired phase to create a vector of 11 seconds of data.  Then 
fit a quadratic least squares model, y = a + bt + ct2 + ε, with 
time as t, the vector of data as y, and the coefficients of a 
(intercept), b (slope), and c (quadratic). (To facilitate 
interpretation, we used a centered version of this model.) 
An ε (error) is calculated as a vector of difference between 
the actual y values and the predicted y values. The ε  vector 
is converted to a single value, d = [(Σε2)/(n-3)]1/2 .  Repeat 
this process with the 2nd second of the same phase and 
continue to the last second of the same phase.  Each second 
will now have a corresponding set of coefficients (a, b, c, 
and d).  Each of the four statistics has a value for each time 
record in the phase.  If the phase is 10,000 seconds long (as 
cruise might be), 10,000 sets of a, b, c and d’s are 
calculated.  Then each coefficient is summarized by 
calculating the mean value, standard deviation, minimum 
value, and maximum value.  This calculation results in a 
mathematical signature for a flight in which the phase data 
of each parameter is summarized into 16 statistics (4 

coefficients with 4 statistics each).  Then the parameters 
value at the beginning of the phase and at the end of the 
phase is added to the signature, resulting in an 18 statistics 
summary of the parameter during a particular flight phase.  
Appendix A contains a technical discussion of the steps 
involved in the continuous data signature. 

To help readers conceptualize this mathematical signature, 
the following comments are presented.  Hopefully, they 
help to clarify and give examples of what some of the 
statistics mean.  The statistics calculated for the coefficient 
a represent the magnitude of the parameter values.  If a 
flight has a higher mean a value than the other flights for 
the parameter airspeed, then its airspeed is on the average 
higher than the other flights for that given phase.  The 
statistics calculated for the coefficient b represent the rate of 
change (slope) of the parameter values.  If a flight has a 
higher mean b value for the parameter airspeed than the 
other flights, this means its airspeed is increasing at a higher 
rate than the other flights for that given phase.  The statistics 
calculated for the coefficient c represent the curvature or 
rate of rate of change of the parameter values.  If a flight has 
a higher mean c value for the parameter airspeed than the 
other flights, then its airspeed change in the slope is 
occurring at a higher rate than the other flights for that 
given phase. The statistics calculated for the statistic d 
represent the amount of variability in the parameter values.  
If a flight has a higher mean d value for the parameter 
airspeed than the other flights, then that means its airspeed 
is more variable than the other flights for that given phase.  
Its airspeed is fluctuating high and low more than the other 
flights.  Other words that are conceptually equivalent to the 
coefficients a, b, c, and d are average value, velocity, 
acceleration, and noise. 

The phase processing for the continuous parameters results 
in a signature matrix that has n rows and 18*p columns, 
where n is the number of flights (1 row for each flight) and 
p is the number of parameters (18 statistics for each 
parameter).   

Additional columns are added to the signature matrix which 
contains the discrete parameter signatures.  Discrete 
parameters contain different modes that are categories with 
no reasonable mathematical calculations possible between 
the varying modes.  Example discrete parameters include:  
thrust reversers, landing gear, air ground switch, slats, etc. 

The signature for discrete parameters is calculated from a 
transition matrix.  A transition matrix shows how many 
times a mode of a parameter changes to another value for 
the next record and how long the data for a given flight 
phase remains in each mode.  The transition matrix consists 
counts of time periods during the flight phase.  It is 
converted to a related matrix form by dividing the off-
diagonal counts by the total number of counts for the flight 
phase; result in the off-diagonal cells reporting the 
percentage of time in which that flight was in that mode 



 4

during a particular flight phase.  The diagonal of the matrix 
reports actual counts that the flight changed from one mode 
of the parameter to another, found in the off-diagonal 
elements of the matrix.  The transition matrix is a square 
matrix with dimensions equal to n (the number of possible 
modes).  After a transition matrix is created it needs to be 
“vectorized”.  This means that an n x n matrix will become 
a vector with n2 elements.  This vector is the signature for 
this categorical parameter and is added to the signature 
matrix.   
 
The continuous and discrete signatures are used in Phase 2 
for analyses.  A different type of signature is also needed 
for graphical representation of the flights during Phase 3.  
This signature allows for plotting the trend of a parameter 
over time.  This signature is referred to as the data 
compression signature, because it is similar to the raw data; 
however the size has been greatly reduced.  We use one 
compression technique for categorical data, run-length 
encoding, and a different technique for continuous data, 
progressive linear interpolation (PLI).   

The run-length encoding is a standard data compression 
technique that stores the value and time of the data variable 
at the time of any change.  It is loss-less compression. 

For continuous variables, the data compression signatures 
provide a smoothed fit through the raw data without missing 
the unusual values.  This reduces the number of data points 
stored from thousands (the raw data) to only a few hundred 
(the data compression data).  This allows for smaller data 
storage, and quicker access for plotting.   

The PLI method begins by using only the first and last data 
points, and connects them with a line.  The residuals are 
then calculated and the (x,y) point associated with the 
largest absolute residual is then selected as an intermediate 
point.  Line segments are then formed from the first data 
point to the intermediate point and from the intermediate 
point to the last data point.  Residuals are recalculated and 
the data point associated with the largest new absolute 
residual is selected as an additional intermediate point.  The 
process is repeated until a pre-specified accuracy level is 
attained or until the number of data points used to establish 
the linear segments reaches some pre-specified limit. 
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Figure 1 – Example of the fit obtained with the PLI 
method. 

Figure 1 shows an example of how well the PLI method 
estimates the raw data for a given parameter.  In this 
example there were over 3000 raw data points.  The PLI 
method found the optimal 100 data points that when the 
points are connected, it fits the raw data with minimal 
residual.  The data compression signature gives a good 
estimate of the magnitude of the flight parameter over time. 
 One weakness of the data compression signature is when 
the flight parameter has a lot of variability and/or bounces 
around a lot.  The data compression signature may not fully 
display all the variability. 

An important aspect of the signature process is that the 
intent is for the primary analysis to be done from the 
characterization signature process and the compression 
signatures will be used for display.  It is possible, with 
modest loss of accuracy, to do analysis based on the 
compression signatures.  It is recommended to the users to 
keep the raw data for the possible, but hopefully very rare, 
event that detailed analysis is necessary and not supportable 
from the characterization signature or the compressed data 
signatures. 

The signature process can be I/O and CPU intensive but is 
is easy to set it up to run continuously through out the day 
and if necessary on multiple machines.  Our experience has 
been that the processing requirements are easily met with a 
single pc. 

Once the signatures are calculated for an individual flight 
they are stored in a database.  The discrete and continuous 
signatures are then available for the analysis phase of The 
Morning Report, while the data compression signatures are 
available for the plots and displays in Phase 3 of The 
Morning Report.  The raw data from the flight is no longer 
needed in the subsequent steps of The Morning Report. 
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3. CLUSTERING METHODOLOGY 
 

Phase 2 is the analysis phase of The Morning Report.  The 
analyses performed include clustering and atypicality 
determination.  It is designed to be run as often as an 
analysis is desired.  It is also designed to run larger analyses 
overnight, so that they can be viewed in the morning, hence 
the name “Morning Report”.   

The first step of Phase 2 is to select which flights will be 
included in the analysis.  Characteristics that may be used in 
defining your selection of flights include: departing and/or 
landing airport and/or runway, date of flight, flight phases 
(i.e. cruise), flight parameters of interest, and type of 
equipment.    

The next step of Phase 2 is clustering the mathematical 
signature data.  The goal of the cluster analysis is to identify 
clusters, or groups, of both typical and atypical flight 
patterns.  The ideal cluster analysis should 1) identify flight 
patterns, 2) enable the characterization of those patterns, 
and 3) provide insight into the typicalness or atypicalness of 
each cluster. 

There can be thousands of flights daily, making it 
impossible for a flight expert to study each flight 
individually.  When similar flights are grouped together into 
a smaller number of groups, then the expert can focus on 
the characteristics of the group.  Each pattern or group will 
have a set of common characteristics in which the expert 
may be able to classify that group with a label such as 
“unstable approach”.  This allows the expert to focus on 
specific groups of flights, and not having to investigate 
every individual flight. 

Statistical clustering techniques are applied to the discrete 
and continuous signature matrices calculated in Phase 1.  
Although Kmeans clustering is used in The Morning 
Report, many clustering techniques exist and could be 
applied in grouping together similar flights.  In general, the 
clustering technique assigns each flight into the group in 
which its signature is similar to the other members of the 
group.  When a flight’s signature is unlike the signatures in 
each of the groups, then it is assigned to its own group.   

If a flight is the only member in a group, then it is referred 
to as a “singleton”.  A flight may be a singleton because it is 
mathematically between established groups and it isn’t close 
enough to be considered a member of any group.  These 
flights maybe called “inliers” if they lie between the clouds 
of data, but not actually within a cloud.  

Another possible way a flight can be a singleton is that it 
has extremely low or high signature data values.  These 
flights are called “outliers”.  They lie on the outside of all 
the clouds of data. 

 

Cluster 1

Cluster 2

Inlier

Outlier

 

Figure 2 – Example of clusters and singletons 

 Figure 2 shows a two dimensional plot of the concept of an 
inlier and outlier.  The inlier lies between clusters 1 and 2 
and is different than the two groups.  It may look different 
than the two groups; however it lies close to the average of 
all the data and may not be too alarming.  The outlier lies 
beyond cluster 2.  It is different than the two groups and its 
value is quite different than the average of all the data.  In 
the next section we discuss atypical flights.  The outlier in 
this example would be considered the most atypical because 
it is both a singleton and it is furthest from the mean. 

4. ATYPICALITY METHODOLOGY 
 

It is common practice for aviation experts to find and 
investigate safety issues with flights.  Without some help in 
identifying which flights to investigate, they will look at 
hundreds of normal flights for every flight they find that is 
intriguing from a safety aspect.  This process can be time-
consuming.  Furthermore, they must rely on their own 
expertise and perceptiveness.  They must compare the data 
to their own standards of acceptable performance to 
determine if a flight displays a problem.  The Morning 
Report uses statistical and mathematical methods to present 
the expert with a set of flights that are atypical and 
consequently much more likely to have noteworthy flight 
data to study.  It also focuses the attention of the expert on 
the flight phase and parameter(s) that are most likely to 
offer insight to aviation safety issues.  In turn, the tool will 
identify problems that expert may have envisioned as 
possible problems and problems that the expert may never 
have envisioned.  This can help the expert to think outside 
the box and to find more obscure but important insights that 
have been hidden in the data and thus facilitate improved 
aviation safety. 
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Figure 3 - Plots Showing Various Data Presentations of the Multivariate Test Data

Atypicality calculations are performed on the same flights 
that were selected at the beginning of the Phase 2 
processing.  Atypicality calculations are made on the same 
mathematical signatures calculated in Phase 1.  They are 
done by flight phase. This section will explore the concepts 
of the atypicality methodology.  A technical explanation of 
this method can be found in Appendix B. 

One of the main statistical procedures used in atypicality 
determination is principal component analysis (PCA) [2].  
This method transforms the variables into eigenvectors.  
The method is useful in combining the information found in 
many variables into just a few transformed variables.  An 
example of this process is found in Figure 3. The data for 
this example consists of 256 records with 16 variables each. 
The user might choose to investigate the nature of the data 
by plotting the records using variable pairs as the axes.  
These four plots show four pairs of these variables being 
plotted against each other.  The relationship between the 
data points cannot be seen clearly in any of these plots.  
Figure 4 shows a plot of the records using the first two 

principal components from the PCA of the original data.  
This plot shows a clear pattern that could not be found in 
the previous plots because of the multivariate nature of the 
data.  In this case, PCA is able to make order out of what 
appears to be chaos. 

PCA takes the original parameters and transforms them into 
linear combinations.  This reduces the dimensions of the 
data from many parameters (hundreds or even thousands) to 
only a few transformed parameters called PCA components 
(usually under 100, depending on the correlation structures 
in the original data).  This reduction is accomplished by 
finding eigenvalues and corresponding eigenvectors for the 
data, then ordering the eigenvalues from largest to smallest. 
 Each eigenvector is then multiplied by the original data to 
create a PCA component.  The number of PCA components 
is the same as that of the variables; however, the first 
components contain much more information than the last 
components.  Only the components in which the 
eigenvalues (starting from largest to smallest) sum to 90% 
of the total of all the eigenvalues are kept.  These 
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eigenvectors represent 90% of the variance observed in the 
data.  The other data are thought to represent random 
variability in the data and no significant loss of information 
occurs when they are discarded. 
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Figure 4 - Plot Showing the Nature of the Figure 1 Data 

The PCA components could now be plotted against each 
other.  These plots may show outliers in the data, or 
possible grouping among the data.  Figure 5 shows an 
example of a 2-dimensional scatterplot of two PCA 
components.  Data points can be seen that are far from the 
pack of data, indicating those flights are atypical from the 
others. 

 

Figure 5 - A Scatterplot of Two PCA Components 

From the PCA components, an atypicality score is 
calculated using Mahalanobis distance [3].  The atypicality 
score is calculated for each flight using the following 
formula: 

 
∑
=

=Α
n

j
jii jPCA

1

2 /)( λ
 (1) 

where i is the flight (row) in which the atypicality score is 
calculated; Α is the atypicality score for a flight; PCA(j)i is 
the jth PCA component vector and ith element in the vector 
for j = 1 (corresponding to largest eigenvalue) to n 
(corresponding to the smallest eigenvalue not cut-off by the 
90% rule); and λj is the eigenvalue associated with the PCA 
component of interest.  An atypicality score close to zero 
indicates a typical flight, and a large atypicality score, 
relative to the other flights, indicates an atypical flight for 
that specific flight phase.  

 

Figure 6 – Example histogram of atypicality scores 

A histogram of the atypicality scores displays the value for 
the flights and allows easy identification of atypical flights. 
 Figure 6 shows a histogram of the atypicality scores.  In 
this example, the flight with the largest score (furthest right) 
is most atypical for that particular flight phase and should 
be the first flight investigated.  The atypical flights shown in 
the histogram will generally correspond to the atypical 
flights seen when plotting each of the PCA components 
(Figure 5). 

Atypicality scores are calculated for each flight phase.  
Most analyses involve multiple flight phases; however the 
scores are not comparable when looking across flight 
phases.  A method was created to standard atypical scores 
so that they atypicality could be ranked across many flight 
phases.  This resulted in the calculation of a global 
atypicality score. 

The global atypicality scores are calculated using p-values 
from the atypicality scores and cluster membership 
information.  Experience has shown that atypicality score 
histograms (as in Figure 6) usually have a skewed shape 
with a long tail to the right.  It was found that a gamma 
distribution fit the atypicality scores well, especially in the 
tail.  Although it didn’t fit as well with the more typical 
scores, the purpose of the atypicality scores was to 
concentrate on the tail.  Therefore, a gamma distribution 
was used to calculate a p-value for each of the atypicality 
scores. 
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As was discussed in section 3, cluster membership plays a 
role in atypicality.  A flight that is a singleton is considered 
to be more atypical than a flight that belongs in a typical 
cluster.  In order to allow cluster membership to play a role 
in the atypicality process, a cluster membership score is 
calculated by using the following equation: 

 
N
n

cms i
i =    (2) 

where cmsi is the cluster membership score for flight/flight 
phase i, ni is the number of flights in flight i’s cluster, and N 
is the total number of flights in the analysis.   

The global atypicality score is then calculated using the 
following equation: 

 )log()log( iii cmspG −−=  (3) 

where Gi is the global atypicality score for flight/flight 
phase i,  pi is the p-value for flight/flight phase i, and cmsi is 
the cluster member score, as shown in equation 2.   This 
results in a global atypicality score that is always positive, 
with larger scores meaning more atypical.  Global 
atypicality scores usually range between 0 and 25.   

Each of the flights is then ranked according to its largest 
global atypicality score (across all the flight phases) from 
highest to lowest score.  The flights are then classified into 
one of four levels.  The top 1% of flights are classified as 
level 3 atypicality, the next 4% of flights are called level 2 
atypicality, and the next 15% of flights are called level 1 
atypicality.  The other flights are considered typical. 

After the atypicality scores and clustering are completed, 
the cluster membership information and atypicality scores 
are stored into a static database.  They become the inputs for 
the Phase 3 displays and plots.   

5. MORNING REPORT DISPLAYS AND PLOTS 
 

Phase 3 allows the user to decide which Phase 2 analysis 
they would like to view.  The Morning Report software then 
presents tables and plots to help the user understand the 
Phase 2 results.   

Table 1 is a view within The Morning Report that shows the 
atypical flights in order of atypicality.  For each atypical 
flight, the table lists which flight phase the atypicality 
occurred and it displays a list of the parameters that most 
contribute to its atypicality.  A paragraph is written by the 
software explaining how these parameters are contributing 
to the atypical nature of the flight.  The paragraph is 
displayed elsewhere in the software outputs.  These 

parameters are determined by using simple univariate 
calculations based on the signature matrix.  It then allows 
the user to drill-down a series of displays and plots to see 
how the flight parameters are influencing the atypical 
flights.  

These plots consist of traces of the particular flight 
parameter over time for the particular flight phase, with a 
backdrop consisting of a performance envelope of other 
flights.  The performance envelope is a contour plot that 
consists of superimposed gray to black boxes displaying the 
number of flights that shared that value at that time.  More 
flights in a box are represented by a darker color.  Figure 7 
shows an example of a performance envelope, as well as 
traces of two atypical flights.  This plot does not represent 
real flight data; it is for illustrative purposes only.  From the 
plot, Flight 314 looks atypical for flap position because its 
values are consistently lower than the other flights.  It also 
appears to fluctuate greatly and may be considered atypical 
for that reason too.  Flight 278 also looks atypical. 

Performance envelopes are also used to contrast two 
clusters.  Figures 8 and 9 show performance envelopes 
contrasting a cluster of interest and a reference cluster.  The 
reference cluster can be the largest cluster or some other 
cluster, or it would be the most typical 80% of flights, or 
even all flights.  Figure 8 shows one of the smaller clusters, 
referred to as an atypical cluster.  It shows that the N2 Right 
values for the atypical cluster are much higher than the 
reference cluster values during approach.  Figure 9 shows 
that the cluster of interest (typical cluster) has a smaller 
pitch angle than the reference cluster at takeoff, but the 
clusters pitch angles become similar when the landing gear 
is up. 

6. CONCLUSIONS 
 

A three phase program has been produced that finds 
atypical data and typical patterns within a complex system.  
Although this paper describes applying these methods to 
digital flight data, it has been extended to other data 
systems, including air traffic control data, and text report 
data.  It can continue being adapted to new systems.  The 
three phases run independently from each other, allowing 
for parallel processing.  It also makes it conducive to 
changes when applying it to new data systems.   

The Morning Report has proven capable of identifying 
possible atypical flights that are atypical due to 
characteristics in the data.  This does not remove the domain 
expert for the equation.  This is a tool that can focus the 
expert’s attention and allow for the expert to drill down to 
the core of the atypicality.  It also allows for greater 
understanding of the general data patterns that exist in the 
system.   
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Table 1.  Example of the Atypicality Display within The Morning Report 

 
 

Figure 7 – Performance Envelope Plot of Flap Position with 3 Flight Traces 
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Figure 8 – Performance Envelope with an Atypical Cluster Contrasted with a Reference Cluster 

 

 

 

Figure 9 – Performance Envelope with a Typical Cluster Contrasted with a Reference Cluster
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APPENDIX A:  TECHNICAL EXPLANATION OF 
THE MATHEMATICAL SIGNATURE 
CALCULATIONS 

 
Following are the steps used in calculating the  
continuous mathematical signature done in Phase 1 
processing: 

 
1. Extract the data for a given flight, given parameter, 

and given phase.  Include the data from 5 seconds 
before and after the given phase.  For example, put 
data into a vector from Flight #1, the parameter 
airspeed during the touchdown phase (including 5 
seconds of data before and after the phase).  If m is 
the number of seconds in the given phase, then the 
extracted data should have m+10 seconds. 

 
2. From this extracted data create an 11-

second data window with the first 11 
seconds (the 5 seconds before the start of the phase, 
and the first 6 seconds of the phase). 

 
3. Solve the least squares equation:  y = a + bx + cx2, 

with y as the data from the 11-second window, x as 
the vector (-5,-4,-3,-2,-1,0,1,2,3,4,5), and a, b, c as 
the coefficients to be solved.  The coefficient d is 

calculated using the equation:  
)3( −

=
n
SSEd  

 
where SSE is the sums of squares error (from the 
analysis of variance table), and n is the size of the 
window (11 in this case). 

 
4. From the data in Step 1, create another 11-second 

data window by shifting the window over by 1 
second, so that seconds 2 through 12 are taken.  Then 
repeat Step 3 with this data and record the 
coefficients a, b, c, and d.  Continue to take 11-
second windows by shifting over 1 second each time, 
until the last 11 seconds are sampled.  This results in 
a vector of size m for each of the coefficients. 

 
5. Summarize each coefficient vector by calculating the 

mean, standard deviation, minimum value, and 
maximum value.  This process results in a 16-
element vector that summarizes the data for a given 
flight, given parameter during a given phase.  This 
vector has the following look:   
a, sa, amin, amax, b, sb, bmin, bmax, c, sc, cmin, cmax, d, sd, 
dmin, and dmax. 
 

6. This process is repeated for each desired flight and 
each desired parameter and results are put into a 
matrix with a row for each flight and 16 columns for 
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each parameter (containing the results from each 16-
element vector).  This matrix is for a given phase. 

 
7. This resulting matrix can be analyzed to find atypical 

flights within the given phase using the method 
explained in Appendix A. 

 

APPENDIX B:  TECHNICAL EXPLANATION OF 
THE ATYPICALITY CALCULATIONS  

Following are the steps used in calculating the 
atypicality scores: 

1.  Scale the data ( Dn × p ).  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=×

j

jij
pnc

dd
D

σ
.

)(  

where dij is the element in the D matrix from row i and 
column j, d.j is the average of the jth column from matrix 
D, and σ j is the standard deviation from the jth column 
from matrix D. 

2.  Remove all rows of data from Dc with at least 1 
missing value. 

D1((n-m) × p) is the matrix with no missing values; 
M(m × p) is the matrix with missing values. 
 

3. Calculate the covariance matrix. 

( ) 21
111)( ')cov( σ−

× == DDDC pp  

4. Calculate the eigenvectors and eigenvalues using 
principle component analysis. 

)(],[ )1()( CEigenFE ppp =××      where E is a 

matrix of eigenvectors and F is a vector of the 
eigenvalues. 

5.  Truncate the number of eigenvectors to use to q, where 
q is the minimal number which satisfies - 

threshold
F

FFFF qq >
++++

∑
+121 ...

 .  

After a threshold is decided upon (0.90 was used in 
these analyses), then q number of eigenvectors and 
values will be kept. 

6. Create the new data.  Note:  Dc is used to create 
the data, with zeros substituted for the missing values. 

)()()( pxqnxpcnxqc EDG ×=  

7.  Calculate the Atypicality Scores (Mahalanobis 
Distance). 

∑
=−
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where i goes from 1 to n, and m´i is the number of 
missing values for that row of data. 

8.  Calculate the Cluster Membership Scores. 

N
n

cms i
i =  

where ni is the number of flights in flight i’s cluster, 
and N is the total number of flights in the analysis. 

9.  Calculate the Global Atypicality Scores. 

)log()log( iii cmspG −−=  

where pi is the p-value for flight/flight phase i, and 
cmsi is the cluster member score. 


